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Summary. In this study we apply the correspondence principle for free
vibrations of a homogeneous viscoelastic solid derived by Fisher and Leit-
man to obtain the torsional modes of a homogeneous viscoelastic rod.
We also extend the correspondence principle, showing that it may be
used to find the frequencies of Love waves in a stratified viscoelastic
medium. Finally, we apply the correspondence principle to four viscoe-
lastic materials: the Kelvin-Voigt solid, the Maxwell solid, the standard
linear solid, and the Achenbach-Chao solid. We show that in each of these
cases some care must be used in applying the correspondence principle
because of the presence of multiple solutions.

1 Introduction

In this study we are concerned with some problems in viscoelastic wave pro-
pagation. Viscoelastic media are of geophysical interest because Spencer {1981)
has found that they model fully saturated porous rocks. In addition, the experi-
ments of Bonner (reported in (Thigpen ef al. 1983)) show that a partially melted
granitic rock is modelled by a viscoelastic material. An understanding of wave
propagation processes in fully or partially saturated porous materials is basic to
energy resource recovery, geothermal exploration, and resource assessment. In
addition, in solid earth geophysics the study of attenuation and dispersion of
seismic waves involves the theory of linear viscoelasticity. In particular, the
damping of the free oscillations of the earth, i. e., the guality factor @ is a topic
of considerable interest. The aim of this study is to increase our understanding
of viscoelastic wave propagation with a view toward applications in the analysis
of attenuation and dispersion in geophysical materials.

For the elastic wave equation consider solutions of the form of sinusoidal
waves f (X)exp(iw,t). Then the amplitude f of the displacement field satisfies a
differential equation which is formally self-adjoint (Achenbach 1975), and the
frequency w, is an eigenvalue. Thus, if the problem is on a bounded dormain with
Dirichlet, Neumann, or Robin boundary conditions, the problem as a whole is
self-adjoint and the eigenvalues are real and the spectrum has no continuous
component, If, on the other hand, the domain 1s unbounded and the Sornmer-
feld radiation conditicn is used on part of the boundary, then the problem as a
whole is not self-adjoint, so that the spectrum may have one or more continuous
components. Even in this case, though, the discrete spectrum is strictly real.

For wave propagation in a viscoelastic medium and sinusoidal solutions
S (X)exp(iw, t) the differential equation for the amplitude f is not formally self-



adjoint. Therefore, even on a bounded domain the viscoelastic wave operator
may have continuous components {Nairmmark 1968). Furthermore, the discrete
eigenvalues w, need not be real. For realistic viscoelastic models in which the
time-domain creep relaxation function is strictly real, the discrete eigenvalues
appear in pairs,

Wy = £+ 1k

with £>0 and b >0. The continuous spectrum arises as a result of the viscoelas-
tic constitutive relation, and therefore, the structure and location of the con-
tinuous spectrum are model dependent. It should also be noted that for a
viscoelastic wave problem in an unbounded domain the Sommerfeld radiation
condition must be recast in terms of a projection onto the subspace of ocutgoing
viscoelastic waves.

Starting from a known solution for the motion of an elastic material, there
are two standard methods for analyzing wave motion in a corresponding viscoe-
lastic media. One method is by perturbation from an elastic material to a
nearby viscoelastic material. This has been done by several authors, and a care-
ful analysis of the method was given by Majda et al. (1985), based on perturba-
tion theory for linear operators (Kato 1966). They found that the validity of the
procedure of perturbing elastic modes to obtain viscoelastic modes is highly
model dependent. Furthermore, the size of perturbation permitted depends on
the frequency and is limited by the distances separating modes. Other than the
need to keep eigenvalues separated, the method gives no insight into the rea-
sons for the restrictions.

The other method of analysis is based on the correspondence principle of
Fisher & Leitman (1966). This principle says that for simple free vibrations of a
homogeneous medium the displacement field f{(xX)exp(iw,t) of a viscoelastic
solid is related to the elastic displacement field f (x)exp{(iw,t) according to the
conditions that the viscoelastic vibration frequency <, and the corresponding
elastic frequency w, be related by the condition

P - ﬁ-, (1.1)
e K.
where K, is the complex wave velocity and K, is the corresponding real elastic
wave velocity. That is, in terms of the elastic modulus ¥, and the density p, we
have K,=~/M./p. The viscoelastic wave speed K, =~/M,{w,)/ p, depends on the
frequency w,, and it is complex, because the viscoelastic material modulus #,, is
complex. The correspondence principle of Fisher and Leitman says nothing
about what happens to the continuous part of the spectrum for the elastic prob-
lem and it gives no information about any new continuous spectrum which may
be present in the viscoelastic case but not in the elastic case. It should be noted
that if (1.1) is regarded as a mapping from @, to w,, there may be more than
one branch, and we have to use additional physical principles to select the
proper branch.

[n this paper we apply the correspondence principle (1.1) of Fisher & Leit-
man (1966) to the torsional modes of a viscoelastic rod and to viscoelastic Love
waves in a stratified medium. In the case of Love wave this is actually an exten-
sion of the theory because we remove the restriction that the medium be homo-
geneous. The motivation for studying these two problems is that we can observe
Love waves on seismograms and we can do laboratory experiments on rods. The
theory presented here is needed as background information in the interpreta-
tion of the resulls. For this reason we find the location of the discrete spectrum
for four different viscoelastic materials a Kelvin-Voigt solid (Leitman & Fisher
1973), a Maxwell solid (Leitman & Fisher 1973), a standard linear solid (Leitman



& Fisher 1973), and an Achenbach-Chao model solid {Achenbach & Chao 1962).
We show that for each of these solids Eq. {(1.1), regarded as an equation for w,,
requires the introduction of a Riemann surface of at least two sheets. We use
the our knowledge of the high- and low-frequency behavior of the spectrum to
identify the principal sheet. The structure of the sheets determines the location
of branch cuts joining them. The corresponding branch points form natural bar-
riers for a perturbation expansion. We expect the branch cuts to give rise to
components of continuous spectrum which have no analogue in the elastic
medium. It happens also that for the Achenbach-Chao model solid for a range of
values of the parameter, we must introduce still another branch cut because it
is impossible to find a single sheet with both the proper high- and low-frequency
behavior of the spectrum. A complete discussion of the continuous spectrum is
more easily carried out from an analysis of the solution of a dynamic problem in
terms of an inverse Laplace transform. We delay such a study to a future paper.

2 The Correspondence Principle for Simple Free Vibrations

In this section we apply the correspondence principle (1.1) to obtain the
torsional modes of a viscoelastic rod. We then show that in a stratified viscoelas-
tic medium in which the anelasticity depends on depth in a certain special way,
the correspondence principle (1.1) may be extended to the modes for Love
waves. [I'inally, the section concludes with implementations of (1.1) for for four
viscoelastic models. Thus, this section serves as a foundation for the rest of the
paper, where these models are discussed in detail

The torsional modes for an elastic rod may be determined as given by
Achenbach (1975). Let the rod have radius 7,, and let J;(2), 7=0,1, denote the
Bessel function of the first kind and of order 7. Let g be a solution of the fre-
quency equation,

(g7a )Jo(gre)—2J:1{gTo) = 0. (2.1)

Then in terms of the wave number k (a real number), the density p, and the
elastic modulus M., the corresponding torsional frequency is given by

o = BV B
with
B°=M,/p.

In terms of the radial position 7, the distance 2 along the rod, and the time ¢,
the elastic displacement field v, is given by

v (r,z,t) = %—Jl(q'r)expi'i(kz —we )1

Accordingly, the viscoelastic torsional modes are the obtained by solving (1.1)
for w,. and the associated displacement field v, is

Vo {T.2.t) = %—Jl(qr)expf'i(kz =yt ).

For the viscoelastic Love wave problem in i stratified medium, we have
from Majda et al. {1985) that

d dv .
dz M’u(z’wu) + [QEP(Z) - dev(Z-w"u)]’vu =0. 0<z <, (2-2)
dv, (0
——( ) =0 and lim v, {z) =0,
dz Z oo

where k is real, M,(z,w,) is the depth-dependent complex shear modulus, and



p{z) is the density. In (Majda et al. 1985) it was assumed that the complex
shear modulus varies continuously with z, but the dependence on w is quite gen-
eral, provided that | M, -~ M, | is sufficiently small. Here, we permit M, and M, to
be piecewise continuous in 2z, but we impose the condition that the complex
shear modulus M, (z,w,) is related to the real shear modulus M,(z) in the spe-
cial way,

My (z.0y) = Me(2)A(wy), (2.3)
where A4 is an analytic function. Then a correspondence principle for the

stratified Love wave problem may be obtained as follows. We rewrite {2.2) using
(2.3) to yield

d dv, w§ 2
2) - = 4
dz MB(Z) dZ + [ A(f‘)‘u) p(‘!) k M8<Z>]'U.u O (2 )
The corresponding elastic Love wave equation is
dv .
fz—[Me(z) G|+ [08e(z) - k(=) 1ve = 0. (2:5)

Upon comparing (2.4) with (2.5), we conclude that if v, is a mode for the elastic
love wave problemn, then it is also a mode for the viscoelastic Love wave prob-
lem, v, =v,, and the frequernicies are related by

s g (2.6)
Alwy) e '
The multiplicative decomposition postulate (2.3) restricts the frequency-
dependent aspect of the material properties to be independent of depth. This
assumption may not be valid for solid earth geophysical applications. It may,
however, be a sufficiently good approxirmation for regional studies.

We remark that this analysis may easily be extended to the case in which
the density p, for the viscoelastic solid is a constant multiple of the correspond-
ing density p, for the elastic problem. That is, we could just as well let

pu(z) = buﬁ(z } pa(z) beﬁ(z )-
where p{2) is a normalized, dimensioniess density and b, and b, are constants.
This change merely causes the introduction of a scaling factor in {(2.6).

For both cases (1.1) and (2.6) the problemn of calculating the viscoelastic
free vibrations reduces to a study of conformal transformations between com-
plex planes. In fact, with the notation

S Uy

Eg. (2.6) takes the form

J{s)=s Ay 1, (2.7)

In (2.7) it is advantageous to continue w, onto the complex plane. Thus, we
regard f(s) as a map from the complex s-plane into the complex wg-plane.
Since the elastic modes w, are strictly real and are presumed known, it is the
inverse transformation f ~! that is of interest. In particular, the correspondence
principle amounts to finding the curve I' in the s-plane, which is the image of the
real line in the w,-plane. In subsequent sections we determine I' for a Kelvin-
Voigt solid, a Maxwell solid, a Standard Linear solid and an Achenbach-Chao
model solid. The mapping f ' in each case is multivalued. We shall see that the
branches of the multivalued map play an important role.



The complex moduli for these model solids are determined from the
dynamic equations for the velocity v and strain tensor ¢,

pg—‘t‘: div a. (2.8)

de 1 i
— = = + (V .
= - Lvu+ (), (2.9)
where o is the stress tensor and AT denotes the transpose of the tensor A.
Different viscoelastic models are obtained, depending on the particular constitu-
tive relation, describing the relationship between ¢ and «.

1). For a Kelvin-Voigt solid (Leitman & Fisher 1973)

oe £
g=M(——+ —),

Gt )

where M; is the instantaneous modulus and 7, is the stress relaxation time.
Thus, for a Kelvin-Voigt solid we find by taking a l.aplace transform with respect

to ! that.

(2.10)

A{—is)=1+s7,. (R.11)
2). For a Maxwell solid (Leitman & Fisher 1973)
90 o .y 0t

at 1, Lot

where 7T, is the strain relaxation time. Thus, for a Maxwell solid we have

A(—is) = ————
o4 L (2.12)
TU
3). For a standard linear solid (Leitman & Fisher 1973)
do g . O &
—+ —= M=+
at T, M5t T, )

with 7, < 7. . Thus, for a standard linear solid we have

A(—is) = -—T]f—, (2.13)
s +

Ty

4). For an Achenbach-Chao model solid (Achenbach & Chao 1962)

6_ 1_2: 1 .1_2»
(6t+T Yo M’(6t+ﬂ:)£

g

with 7, < 7.. Thus, for an Achenbach-Chao solid we have

0<o= —<1. (2.14)

3 Kelvin-Voigt solid
Upon introducing the dimensioniess variables
P =78 and ¢ = T,w, /R

into (2.11), we obtain for the correspondence relation (2.7)



_—®r _ (3.1)

2V1+p
Note that the map {3.1) requires two sheets in the p-plane because of the pres-
ence of the square root. In fact, it is clear by inspection that p=—1 and p== are
branch points. We have to join these two branch points with a cut, and we shall
see that the cut is to be taken from p=-1 to p== along the negative real axis.
The question which is more interest to us, however, is the location of singulari-
ties in the ¢-plane, because our task is the determination of the location of the
image in the p-plane of the real axis in the ¢-plane. To solve that problem, we
may proceed in either of two ways: by analyzing (3.1) directly, or by looking for
simpler intermediate transformations. We shall do it both ways, starting with a
chain of intermediate transformations.

An inspection of (3.1) suggests the following sequence of transformations.
With

p =21 (3.2)
Eq. {(3.1) becomes the well-known Joukowsky transformation {Bieberbach 1953)
é_( z — }!— = 7{ (33)

This transformation is also discussed :n Appendix A. The map (3.3) may be
inverted,

z =i+ V1-¢2 (3.4)
We see that there are branch points at ¢=+1 Note that the inverse function to
(3.1) is a composition of (3.4) with (3.2) and that the mapping (3.2) preserves the

singularities in (3.4) and adds no new ones. Thus, we need concern ourselves
only with the branch points {==+1.

We have to use physical principles to determine the location of the cut and
to specify the sheet for the mapping {3.4). For ¢ on the interval —1<¢<1, the
form of (3.4) suggests the substitution ¢=sin®¥, -n/2<9<nr/2. The two
corresponding values of 2 and p are

z =e¥ p =Pt (3.5)

z = -.g"""'a, r=e & 1. (36)

In both cases p goes around the circle of radius 1 with center at —1, as ¥ goes
from —m/ 2 to n/ 2, but the direction is different. In order for (3.1) to be a per-
turbation of the elastic case p = i¢ for values of ¢R0, we must choose the coun-
terclockwise branch (3.5). In Fig. 1 the curve (3 5) is shown as a solid curve and
(3.8) as a dashed curve.

For ¢ on the real axis and ¢>1, the form o' (3.4] suggests the substitution
¢{=coshd, 0<¥<e=, which gives
3 B,

z =% p - — a7 (3.7)

Boop =g R (3.8)
For a Kelvin-Voigt solid the dynamic equation {2.8)-(2.10) is of parabolic type, so
that Re p-»—o as ¢{-»= through real values. Conseguently, we must choose the
branch (3.7). This implies that as ¢ passes ¢=1 in the increasing direction on the
real axis, the image in the p-plane makes a 90° right turn. Consequently, the
cut leaving the branch point ¢=1 must lie in the upper halfplane. In fact, the
entire cut from ¢=—1 to {=1 must lie in the upper halfpiane, for otherwise, the
locus of the viscoelastic modes would have a discontinuity.

zZ =1ie



We still have to determine the image of the part of the real ¢ axis from
Re é=— to é=—1. An analysis similar to that given for {(3.7) and (3.8) shows that
if we set {=—cosh, 0<¥<=, in (3.4), then the proper branch is

z=-1%% p=-1-e% {(3.9)

The complete proper image in the p-plane of the real axis in the ¢-plane is
shown as the solid curve in Fig. 1. The extraneous branch (3.8) is drawn with
dashes. We conclude by noting that Fig. 1 shows that the cut in the p-plane for
the square root in (3.1) is to be taken from p=-1 to p== along the negative real
axis.

The other approach is to get as much information as possible directly from
(3.1). We begin by differentiating (3.1),

ag _ __1(.&2)_ (3.10)

dp ~ 4(p+1)¥/?

The mapping (3.1) fails to be conformal at any point where d¢/dp is zero or
does not exist. It is clear that these are the points p=—1, p=—2, and p=«. let
us begin by examining (3.1) for p near —1. It is clear that p=—1 maps onto ¢=x,
and it follows from (3.1) that the Laurent expansion for p about ¢=w« is of the
form

1
=—1- —+0(-
P i (

1
Fax ). (3.11)
Consequently, for ¢=Re'® with & large,
o -2
pR—-1--

aR?
so that an angle at p=—1 is twice the size of the corresponding angle at ¢=co,
This is the reason for the U-turn at p=—1 in the dashed curve in Fig. 1.

At p=2 it is clear from {3.10) that dp/ d ¢ fails to exist, and the transforma-
tion inverse to (3.1) has singularities at the image points ¢{=+1. In order to
determine the type of singularity at, say, {=1, we make a Taylor expansion of
(3.10) about p=-2, taking the branch for which Vp+1 =1 at p=-2,

gi—- 1_ +2Y+ O(!p+>~ 2
Integration of this approximation shows that

(=1+ é—(_p+.2)2 + O0{|p+2]%)

for p in a neighborhood of —2. Thus, for ¢=1+7e'® with 7 small, we have
p=-2+VBre?+ Or).
This shows that an angle at ¢=1 is mapped into an angle at p=-2 of half the size,

thus explaining the right angles at p=-2 in Fig. |. A similar analysis could be
performed to show that there is another square-root singularity at ¢=-1.

It remains to examine the case of p »x. It follows directly from (3.1) that
p=—4+0(1) as ¢ >, (3.12)
and we see again that an angle at =9 is doubled i1 size al p =<, this time on the
other sheet.

We have seen that a simple analysis explains the sharp bends in the curves
in Fig. 1, thus giving an understanding of the local behavior near critical points.
To get the curves in Fig. 1 away from the critical points, we had to look at the



global picture through the mappings (3.2) and (3.4). These ideas are important
to our later discussion of the standard linear solid, because for it we can't con-
struct a simple chain of transformations, and we use the computer to fill in the
image curves between the critical points.

We conclude this section by returning to the physical variables. Let
_ Tghite
=
Then we have shown that the viscoelastic frequencies of a Kelvin-Voigt solid are
given by the following. For0 < y<1,

s = —71—(1— exptigsin ' x {). (3.13)
£

§ = -:i—X?'U + \/t _Xle:) (3.14)

The viscoelastic modes of a Kelvin-Voigt solid are analogous to the motions
of a damped oscillator, in that, {3.13) represents an underdamped oscillation
and (8.14) is a overdamped motion. Critical damping occurs at T.kwg = 2 or

x = 1.

and for 1 <y < o=,

4 Maxwell Solid
For the Maxwell solid (2.12) we introduce the dimensionless variables

P = TeS and ¢ = 2T,
and the correspondence relation (2.7) takes the "orm
2NEEET) = ¢ (4.1)

We see immediately that there are branch points at p=0 and p=—1. Again, we
may either analyze {(4.1) directly or construct a sequence of simpler transforma-
tions. One such sequence is as follows. let

¢ = - iV,
QW _-_(»'2__ l
4!
and
1
= + —
£=p+ 3

Since we are interssted in the inverse function to (4.1), we invert these transfor-
mations and analyze

w=

=i (4.2)
:} (4.3)
p=£- i- (4.4)

It is clear that the mapping (4.2) has no singularities. The mapping {4.3)
has a branch point at w=-1/4, which is the image of the points ¢=+1. The



mapping {4.4) is just a translation and has no singularities. Thus, the only singu-
larities for the inverse transformation to {(4.1) are branch points of square-root
type at {=+1.

Let us now determine the image of the real line in the ¢-plane. It is clear
that the transformation (4.2) maps the real axis of the ¢-plane onto the negative
real axis of the w-plane. For w real and —1/ 4<w<0, we see from (4.3) and (4.4)
that ¢ and p are real and that, depending on the branch of the square root,
either

D<t< _é.- - 21—_, p <0, (4.5)
or
__1_5550, —lép,é-‘-l—. (4.8)
o 2

These are the two images of the real segment —1<¢<1. For w real with
w<—1/4, we see that £ is purely imaginary, with the two branches complex con-
jugate of each other. Consequently, the part of the real ¢ axis with |¢/>1 maps
onto the line Re p = -1/2. The choice of the branch is determined as follows.
Let us start with ¢ real and {~e. Then in order for high-frequency modes in the
Maxwell solid to behave like damped high-frequency elastic modes, we must have
pRi¢ as ¢+, Thus, the segment —=<¢<—1, ¢ real, is mapped onto the part of
the line Re p=—1/2 which lies in the third quadrant. Likewise, the segment
1<¢<=, { real, is mapped onto the part of the line Re p=-1/2 which lies in the
second quadrant. Since there must be no damping in the zero-frequency limit,
the branch (4.8) is extraneous, and we must choose the branch (4.5). The full
image is shown in Fig. 2. Just as for the Kelvin-Voigt solid, we see by the angles
at the corners that the cut from ¢=—1 to ¢{=1 must lie in the upper half of the ¢-
plane.

As we did for the Kelvin-Voigt solid, we can get a great deal of qualitative
information about the inverse to {4.1) by analyzing the behavior of {4.1) near
critical points. We begin by differentiating (4.1) to get

d{ _ —1(2p+1)
dp  Vp{p+1)
Thus, we see that d¢/dp=0 at p=-1/2, and d¢{/ dp=w= at p=0 or p=—1. The
mapping (4.1) is regular at p==. Let us examine first the behavior near
p=-—1/2, which by (4.1) corresponds to ¢=r1. Just as for the Kelvin-Voigt solid,
we expand d¢/ dp in a Taylor series about the critical point,
U - ap+r Lyiogps L3y (4.7)
dp 2 ‘ '

5 |
Upon integrating (4.7), we see that for p=~1/2+72"® we have
&1 =—2r%e* + o(r')

so that angles at the branch points é=+1 are mapped into angles of half the size
at p=-1/2. Similarly, expansions of (4.1) about p=0 and p=—1 show that an
angle at {=0 is mapped into an angle twice the size at p=0 or at p=—1.

Finally, we transform back to the physical variables to find that the viscoe-
lastic frequencies of a Maxwell solid are given by

-1 VIR . 1
—_ —_— < e < -,
o7, [1 1 xz] for ( J T, (4.8)

s =

and
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_ -1
s =
2Tg

[1-iVX? - 1] for w, > \ (4.9)

2KTg
where x = 2kT,w,. For frequencies —1/ (2xT,)<w, <0, the formula (4.8) remains
valid, and for w<—1/(2k71,) the viscoelastic modes s are obtained by taking the
complex conjugate of (4.9).

It is interesting to note that the Maxwell solid doesn't have the low-
frequency, weakly damped free vibrations of the Kelvin-Voigt solid. In the
Maxwell solid, there are two distinct sets of vibrations, namely, an oscillatory
motion with a fixed decay rate (4.9) and a strictly decaying motion (4.8).

5 Standard Linear Solid

For the standard linear solid we make a change of variables in (2.13)

. To
P=T,8 (=T, ana 1 = .
E
and the correspondence principle {(2.7) becomes
—ip ptl _ . (5.1)

pt+a

It is clear that there are branch points al p=-1 and p=—a. (Note that 0<a<1 by
assumption.) We take the branch cut to be the interval from p=—1 to p=-a.

We do not try to write (5.1) as a sequence of simpler transformations. As an
indication of the difficulties inherent in such a project, note that if we square
(5.1) and clear fractions, we obtain a cubic equation in p for each value of ¢.
This tells us that there are three sheets in the ¢-plane and that any sequence of
transformations equivalent to inverting (5.1) will have to include the solution of
a cubic. In Figs. 3-8 for four values of & we show the three images in the p-
plane of the real axis in the {-plane. The principal branch shown as a solid
curve, a choice dictated by the fact thal for low frequencies (¢®~0), a standard
linear solid behaves like a Kelvin-Voigt solid, and for large frequencies (¢}, it
behaves like a Maxwell solid. The resl of Lhis section js deveted to an explana-
tion of these figures.

We begin by obtaining as much local information as possible.  First, it fol-
lows directly from (5.1) that p == is a regular point. In fact, we find that as ¢-e
one branch of the inverse to (5.1) has lLauren: expansion of the form

p =il - -LJ,-}—(L+ A1),

[

(5.2)

a

We get another branch by taking the complex conjugate. This explains the verti-
cal asymptotes in Figs. 3-6.

Upon differentiating (5.1}, we find that

d¢ _ —i(2p* + (3a + 1)p +2a) 5.3
dp ~ (p + 1)/3p + a)¥2 (5.3)

It is clear that d¢/ dp=0 at the zeros p, and pp of 2p®+(3a+1)p+2a and that
d{/dp== at the points p=—a and p=-1. An expansion of (5.1) about p=-1
shows that angles at {=0 are doubled at p=-1. Similarly, an expansion of (5.1)
about p =—a shows that on this branch angles al ¢{== are doubled at p=—a.

Fach of the points

p = - 82t L yoayisea, (5.4)

4 4
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pg = — @“7:'—&— i—-\/(1—a5(1—9' ), (5.5)
is the image of two branch points in the ¢-plane. The reason for the multiplicity
is that in (5.1) there are two values of { for every nonzero finite value of p. In
Figs. 3-6 the values of p, and pz are marked with x’s.

We consider three cases, depending on whether the p; are real and distinct,
equal (and real), or complex. We begin with a=1/9 because we want the sheet
structure in the ¢-plane to depend continuously on @. For a=1/9 the numera-
tor of (5.3) has a zero of second order at p=p,=pgz. That is. the Taylor series for
d¢/ dp about p=p, is of the form

d¢ _ R -p)
dp ~ (pi+ DVE(p, + )V
Conseguently, the Taylor series for {(p) about p =p, has the form

¢=uo+aglp —p)*+ Ollp - Pl
with ca#0. In fact, it is easy to see from (5.1) that coq=11/ ~A. Thus, for the
inverse function with =1/ 9 each of the branch points ¢= =1/V3 is a cube-root
singularity. In order to have consistency with a Kelvin-Voigt solid at low frequen-
cies and a Maxwell solid at high frequencies, we see that the cut from ¢{=-1/ V3
to &=1/ V3 must lie above the real axis. The structure of the three sheets in the

¢-plane is shown in Fig. 7 in a cross section taken along the imaginary axis.

+ 0(ip —p1'®).

For a=1/9 the three images in the p-plane of the real axis in the ¢-plane
may be explained as follows (see Fig. 4). As Re ¢ starts from —e, the principal
branch starts up the solid path (5.2) in the third quadrant. One extraneous
branch is the complex conjugate of this one, and it corresponds to the dashed
line on sheet 3 in Fig. 7. (If we start in sheet 1 and go around the branch point
in the clockwise direction, we cross the cut from above, winding up on sheet 3.
The corresponding angle swept out in the p-plane is —120°. The other starts at
p=—a, and it is the image of the dashed line on sheet 2 in Fig. 7.). As { passes
the branch point {=—1/ V3, for each of the branches p executes a 80° right turn
(because of the cube root). For the principal branch the path goes around the
loop in the counterclockwise direcltion. At ¢=0 the three images are
p =0,0, -1 Althe branch point {=1/ V73 the paths rmake another BO® turn to
the right. The principal path connects with (5.2) as ¢ »= I order to draw Fig. 4,
we used this local analysis Lo determine the behevior i p = =, 0, p;, — 2, and
~ 1, and we used Newton’s method and vontinuat.en ir ¢ to find how the local
pieces join together

Let us now examine the complex case i/ %<wu<l. Inthat case the values of

P, and pg in (5.4) and (5.5) are complex conjugates of each other, and it follows
from (5.1) that the corresponding branch points in the {-plane are located at
the vertices of a rectangle with center at the origin and sides parallel to the real
and imaginary axes. See Fig. 8. The main slep nvolves showing that

Pitl _oswol e

p:ta u
where

w = V{1=a) +1v{9a-) = re'”,

and w"® denotes the complex conjugate of w. Similarly, we have

.
El—: —w - &

pg+ﬂ w
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Thus, with p=pe'® in (5.4), the four branch points are ¢=+pe *(#*®). This analysis
shows that for 1/9<a <1 the real axis in the {-plane does not hit the branch
points. Consequently, the only local analysis we have to take into account is that
involving ¢-+0 and ¢ -, and this is the same as for a=1/9. In Figs. 5 and 6 we
use the Newton's method and continuation in ¢ to join these local pieces to form
the global images of the real axis in the {-plane.

Note that between Figs. 4 and 5 the prineipal branch varies continuously
with a, while the other branches are discontinuous. This may be accomplished
with a continuous sheet structure if the cuts for 1/9<a <1 are taken as in Fig. 8
with the cross section of the sheets on the imaginary axis as shown in Fig. 9. In
Figs. 7 and 9 the principal branch of the real axis is marked with a solid line.

[t remains to consider 0<a<1/9, and we see from (5.4) and {5.5) that p,
and pg are real and that —1<pz<p,<—a. Consequently, by (5.1) the correspond-
ing values {; and ¢, are also real, and the two values of { for each p; are nega-
tives of each other. We join each of these pairs of branch points with a cut just
above the real axis. It is easy to see that each of these branch points is of
square-root, type, explaining the 90° turns in Fig. 3. Finally, in order for the
sheet structure to be continuous as a»1/9 and consistent with Fig. 3, we see
that for |Re¢| <¢, the sheets are as in Fig. 7, and for ¢;<|Reé|<¢z sheets 1 and 3
cross just above the real axis, while sheet 2 is undisturbed.

From an inspection of Figs. 4-6 we might expect that [' lies in a strip in the
p-plane. This is indeed the case. A precise staternent of this result is given In
the following theorem, which is proved in Appendix B.

THEOREM 1. The wviscoelastic free vibrations of a standard linear solid with
0<a<]l lie in the sirip

18 (Rep=u0},

{p | -

and for p #0 Lhey ora always dissipative, 1. e, Rep <0

Remarks. The dissipative nature of the viscoelastic modes is to be
expected from the dissipativity principle of Gurtin & Herrera (1965). Note also
that the edges of the strip are just what is prescribed by the behavior {5.2) as
¢~ and by the fact that p=0 at ¢=0.

6 Achenbach-Chao Model Solid

In terms of the dimensionless variables
P =7, and ¢ = w2

with the Achenbach-Chao comiplex modilus 2 14} the correspondence relation

(2.7) takes the form
—ip{p +1)
2(p + o)

with O<a<1. The inverse function Lo (6 1" is the solution of

{ (6.1)

P2+ {1 =2i¢p ~ ide =0,
and is therefore multi-valued, that is, the Riermnann surface of ¢ has two sheets.

In order to understand the mapping (6 1) from a global point of view, we
write {6.1) as a sequence of simpler mappings. © fact, {(6.1) is equivalent to the
seqguence:

- _Pro
z erea (6.2)
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-1, 1
£= 5z~ ) (6.3)
and

= —i(Vall—a)t — o + -é-). (6.4)
Eq. (6.2} consists of a translation and a change of scale. Eq. (6.4) performs a
scale change, a translation, and a rotation. Eg. (6.3) is the well-known Joukow-
sky transformation. It appears in the discussion of the Kelvin-Voigt solid and is
discussed in Appendix A. Thus, the essential feature of (6.1) is the Joukowsky
transformation, describing ideal flow past a circular cylinder. The image of the
real ¢ axis for 0=0.3, 0.5, and 0.7 is shown in Figs. 10-12. In each of these cases
the principal branch is shown as a solid curve and the extraneous branch is
drawn with dashes. The unusual behavior for a=0.3 may be explained as follows.
The inverse mapping to (6.3) is

GRS

which has branch points at £é=+ti. Consequently, by (6.4) the branch points in
the {-plane are located at

&= Vol —a) + (cx—%)i. (8.5)
Thus, we see that the branch points cross the real axis of the ¢-plane at ax=1/2,

which causes the behavior for a<1/ 2 to be different from that for a>1/ 2.

In order to understand this phenomenon, let us perform a local analysis,
starting with an examination of the high-frequency (¢-=) and low-frequency
{¢»0) limits. It is clear from (8.1) that the two images of (=~ are p== and
p=—a. In fact, a slightly more detailed analysis of {6.1) shows that as ¢+ these
two branches have laurent expansions of the form

p=2ic~{1-0a)+ r)(-‘;;—-) (6.6)

and

P=-

ia{l —a) 1
+ + 0 :
It is clear that the branch (6.6) is a perturbation of the elastic case p=2i¢, while
(6.7) 1s not.

From (6.1) it is evident that the images of ¢=0 are p=0 and p=-1, but only
the branch p =0 makes sense physically. Thus, it would seem as if all we have to
do is to extend the branch (6.6) until it goes through p =0 at ¢=0. This turns out
to be possible only if o=1/2.

It is true thal we have already found in (6.5} the locations of the branch
points, but alternatively, we could also do this by a local analysis. Upon
differentiating (6.1), we see Lhat

d¢ _ pf +2ap +
dp 2i(p + a)®
so that d{/dp=0 and dp/ d ¢ fails to exist when p takes on the values

p, = —a+iva{l = o),
p2 = —ax —iva(l - o)

The images of these points are the points - 5.5)
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¢ =Vva{l —a) + (o - i—)i (6.8)

and

1

<-2:_VLXE1—CX)-+(O\— é
and it 1s easy to show that they are branch points of square-root type. We see
from (6.8) and (6.9) that ¢; and ¢ lie on the circle

y=16 ¢ =172

and that they lie in the upper half of the {-plane if 1/ 2<a<1 and in the lower half
if 0<a<1/2. This implies that for a>1/ 2 if we connect the branch points by a
cut in the upper half plane and if the location of the cut depends continuously
on &, then in every neighborhood of a=1/2 the image in the p-plane of the real
axis in the ¢-plane must have some sort of discontinuity. Either the cut lies
completely in the lower half plane for o<1/ 2 resulting in violation of the {6.6) as
¢-ee or of p=0 al ¢=0, or the cut crosses Lhe real ¢ axis, resulting in breaks in
the image curve but maintaining (6.6) as ¢»= and p=0 at ¢=0. In Pig. 10 for
«=0.3 we have chosen the second oplion, arbitrarily taking the cut to be the
lines Re ¢=+Va(1 — ), Im ¢=2a—1/2. This behavior implies that for a<1/ 2 it is
not possible to represent the solution of & dynamic viscoelastic wave problem in
terms of modes alone; the contribution >f contour integrals around the branch
points must also be included.

)i, (6.9)
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Appendix A The Joukowsky Transformation

For the sake of completeness we include here a brief discussion of the
Joukowsky transformation

w= gz = ). (a1)

which we met in our discussion of the Achenbach-Chao model solid in Eq. (8.3)
and of the Kelvin-Voigt solid in Eq. (3.3). (Actually, Eq. (3.3) contains an addi-
tional factor —i which merely performs a rotation by —90°) Similar analysis of
the Joukowsky transformation may be found in classical references on confor-
mal mapping, such as the book by Bieberbach {1953).

We begin by examining the images i the w-plane of circles 2 =re'® in the
z-plane parameterized by the radius 7. We see from a direct substitution that
=L L - LIRS
Rew = > (r - Jeos¥, Imw = 5 (r + - )sin g, (A.2)
Thus, the unit circle 2 =e*® is collapsed onto Lhe segment from w = ~i to w =1.
In our analysis of the Kelvin-Voigt and Achenbach-Chao solids we actually used

the mapping inverse to (A.1). It is for this reason that a circle appears as the
image of a line segment in Figs. 1 and 11.

For values of r different from 1 we see from (A.2) that the image in the w-
plane is an ellipse centered on the origin with major axis of length (7 +1/7)/2
and on the imaginary axis and with minor axis of length {r - 1/7'?/ 2. Thus, each
of these ellipses has its foci at w = +%, and the segment we obtained when7 =1 is
merely a degenerate ellipse of this family. Note that for 7 > 1 the circles in the
z -plane of radius ¥ and 1/7 map onto the same ellipse in the w-plane.

In our discussion of the Achenbach-Chao rmodel solid we were interested not
in the inverse images of ellipses, but of lines, Re w =constant. The images in the
z-plane of several such lines are shown in Fig. 14. They represent the stream-
lines of irrotational flow past a circular cylinder, and that is the reason for the
classical interest in the mapping. Note iri Fig. 13 the special role played by the
circle |z | = 1. separating the external flow field from the internal flow field. We
have seen that the inverse lransformation to (A.1) is double valued. This is
shown in Fig. 13 by the fact that each linz, Re w = constant # 0, is mapped onto
an exterior streamline and an interior streamiine. In Fig. 13 one of these
images is drawn as a solid curve and the other with dashes. We have chosen
rather unusual cuts {Im w =11, Re w<0) in keeping with the cuts introduced in
Section 6. Thus, the curves shown in Figs. 10-12 are simply individual curves
from Fig. 13 with appropriate translation and scal ng

Appendix B Proof of Theorem 1

In this appendix we show by elementary arguments that if p=z+iy with
y#0 such that (5.1) is satisfied for real . ‘hen —(1-a)/2<x<0. This is
equivalent to Theorem 1. We begin by transforming the problem to a question of
determining the location of the real zeros of 1 cubic oolynomial in z with
coefficients depending on a and .

If we square both sides of (5.1) and mul:iplv by —(p+a){(p'+a), we obtain
the relalion

pip + N +a)=~p+ a ?? (B.1)
where p'=z —iy. For ¢ real the right-hand side of (B.1) is real. Thus, upon set-
ting the imaginary part of the ieft-hand <ide of (F.1) equal to zero with p =z +iy.
we find that
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(Rz® + (1 +3a)z® + 2(a + y¥)z + (1 —a)y®)y = 0. (B.2)

Note that the right-hand side of (B.1) is real when ¢ is pure imaginary, so that
{B.2) also contains the images of the imaginary axis in the ¢-plane. In particu-
lar, this includes the part of the real axis y=0 with >—a or £<—1, as is easily
seen from (5.1). In any case, the trivial solution ¥ =0 is not of interest to us.
Therefore, we are led to the question of locating the zeros of the polynomial in .

F(z)=222+ (1 +3a)z? + 2{a + y*)z + {1 - a)y® (B.2)

Since 0<a<l1, it is clear from {B.2) that f(z)>0 if =0 and y#0. Thus, we have
shown Lhat the solutions of (5.1) for real ¢ lie in the halfplane Re p<0 with only
the point p =0 lying on the boundary.

[n order to show thal. Re p is bounded from below by —(1—a)/2 for p on "
let us begin by performing a combined shift and reflection in {B.2). Upon setting
z=—z~-{1-a)/ 2 and

1 -a

glz)=-f{-2z - ——),

we find that

3a — 1
2

Thus, 1t 1s clear that g(2)>0 if =0 and 0<a<l. In other words, we have shown

that f{z)<0if z=—(1-a)/2. That is, the zeros of f(x) are restricted to lie in the

interval —(1-a)/2<z<0, and the curve I" lies in the strip —(1-a)/2<Re p=<0.

This completes the proof of the theorem

g(z)=22(z — 2+ 2ytz +a*(1 -a).
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1. Kelvin-Voigt solid.

2. Maxwell solid.

3. Standard linear solid, a =0.08.

4. Standard linear solid, @ =0.111.

5. Standard linear solid, a =0.125.

6. Standard linear solid, @ =0.75.

7. Cross section of the sheets, a =1/9.
8. Location of the cuts, 1/9<a <1.

9. Cross section of the sheets, 1/9<a < 1.
10. Achenbach-Chao solid, a =0.3.
11. Achenbach-Chao solid, o = 0.5.
12. Achenbach-Chao solid, . = 0.7.

13. Joukowsky streamlines.
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